Intrinsic high cycle fatigue behavior of ultrafine grained pure Cu with stable structure
نویسندگان
چکیده
منابع مشابه
Fatigue Behavior of an Ultrafine-Grained Al-Mg-Si Alloy Processed by High-Pressure Torsion
The paper presents the evaluation of the mechanical and fatigue properties of an ultrafine-grained (UFG) Al 6061 alloy processed by high-pressure torsion (HPT) at room temperature (RT). A comparison is made between the UFG state and the coarse-grained (CG) one subjected to the conventional aging treatment Т6. It is shown that HPT processing leads to the formation of the UFG microstructure with ...
متن کاملMechanical Behavior of an Ultrafine/Nano Grained Magnesium Alloy
The application of magnesium alloys is greatly limited because of their relatively low strength and ductility. An effective way to improve the mechanical properties of magnesium alloy is to refine the grains. As the race for better materials performance is never ending, attempts to develop viable techniques for microstructure refinement continue. Further refining of grain size requires, however...
متن کاملEffect of Low Cycle Fatigue Predamage on Very High Cycle Fatigue Behavior of TC21 Titanium Alloy
The effect of low cycle fatigue (LCF) predamage on the subsequent very high cycle fatigue (VHCF) behavior is investigated in TC21 titanium alloy. LCF predamage is applied under 1.8% strain amplitude up to various fractions of the expected life and subsequent VHCF properties are determined using ultrasonic fatigue tests. Results show that 5% of predamage insignificantly affects the VHCF limit du...
متن کاملUltrafine-Grained Metals
Ultrafine-grained (UFG) metallic materials are at the cutting edge of modern materials science as they exhibit outstanding properties which make them very interesting for prospective structural or functional engineering applications. Due to the progress in severe plastic deformation techniques during the last decade, ultrafine-grained microstructures are no longer only restricted to easy to def...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science China Materials
سال: 2016
ISSN: 2095-8226,2199-4501
DOI: 10.1007/s40843-016-5068-6